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This paper presents an evolutionary algorithm for wind speed reconstruction from synoptic pressure pat-
terns. The algorithm operates in a search space formed by grids of pressure measures, and must classify
the different situations into classes, in such a way that a measure of wind speed in a given point is min-
imized among patterns assigned to the same class. Then, each class is assigned a mean wind speed and
direction, so the wind speed reconstruction is possible for a new grid of synoptic pressures. In this paper
we present the problem model and the specific description of the evolutionary algorithm proposed to
solve the problem. We also show the good performance of the proposed method in the reconstruction
of the average wind speed in six wind towers in Spain. The proposed method is applicable to wind speed
reconstruction or reconstruction of wind missing data of wind series, specially when there is no other
variable or related measure available.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Wind speed series reconstruction is an important problem cur-
rently faced by companies exploding wind farms. Basically this
problem is usually faced by obtaining a model for characterizing
the wind speed based on previous real wind measures, and then,
apply it to obtain values in the past in order to reconstruct wind
speed series. Different techniques have been used to obtain these
wind speed models, such as statistical methods [1–5], neural net-
works [6,8,7,9–11], support vector machines [12] or hybridization
of some of these algorithms [13].

The majority of the existing techniques to reconstruct wind
speed series (and also for long-term wind speed prediction prob-
lems) are based on past wind speed data [14], and some of them
include other atmospheric variables such as local temperature,
radiation or pressure at the measuring point. The main problem
with this approach is that these prediction variables are not always
available for all the places, so it is sometimes difficult to translate
the current techniques or studies to new locations. This problem
with local measures is common all over the world, so the idea of
considering synoptical information combined with local informa-
ll rights reserved.
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tion has been of interest in the last few years. Synoptic information
(mainly atmospheric pressure) is available all over the world and
there are reliable records of synoptic pressure fields back to more
than one century ago.

The question that arises is then wether we could obtain a rea-
sonably accurate model for wind speed series reconstruction based
on this synoptic information (atmospheric pressure), instead on
only local information. As has been mentioned before, this idea
has been successfully applied to rainfall or pollution prediction in
the last few years [15–17]. In these papers, rainfall or pollution
measures are explained depending on different pressure synoptic
patterns. The objective of this paper is to do something similar
with a measure of wind speed in a given point, i.e. obtaining the
pressure patterns (pressure clusters) which better explain a wind
speed measure in given measurement point. These pressure clus-
tering can be then used to obtain a reconstruction of the wind
speed vector (module and direction) in that point. The question
to clarify is, first, whether such a reconstruction is possible, and
second, how reliable is it with respect to the real measure in a gi-
ven measurement point.

In this paper we propose to use an evolutionary algorithm to
carry out the synoptic pressure clustering for wind speed
reconstruction. Evolutionary algorithms are solid population-
based approaches which construct the solution to a problem using
a loop-fashion procedure, based on the rules of the natural evolu-
tion and survival of the fittest individuals. In this paper we present
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the encoding of the problem within the algorithm, and the specific
evolutionary operators that we have implemented to design the
wind speed reconstruction system. We have tested the perfor-
mance of the proposed technique in several wind measurement
towers in Spain, where we have carried out the reconstruction of
a test series after training the evolutionary algorithm. The results
are really promising and show the possibility of including synoptic
information in the reconstruction or long-term prediction of wind
speed.

The rest of this paper is structured as follows: Section 2 pre-
sents the problem definition. Section 3 describes the evolutionary
algorithm proposed in this paper for wind speed reconstruction.
Section 4 presents the results obtained by applying the evolution-
ary algorithm to data of six measuring towers in Spain. Section 5
closes the paper giving some final conclusions.

2. Wind speed reconstruction based on synoptic pressure
patterns

The problem in this paper consists of obtaining a synoptic-scale
pressure patterns system which allows to reconstruct the wind
speed vector (module and direction) in a given point at a given
time, once we have the synoptic pressure pattern associated to that
time. Mathematically, this problem can be stated as follows:

Let dt, t = 1 . . . , T, be a series of daily wind speed real vector
(module and direction), measured in a given point (a wind farm,
measuring tower, etc.), for a given period of time T. Let Pt,
t = 1 . . . , T, be a series of daily synoptic-scale pressure measures
in a grid. In our case, each component of Pt is a matrix of 14 � 13
surface pressure values (182 values), measured in a grid surround-
Fig. 1. Pressure measurements grid and location of associat
ing the Iberian Peninsula (Fig. 1). This problem can be solved by
obtaining a pressure clustering, i.e. forming a set of N clusters (cen-
troids) in the space of pressure (space Pt), in such a way that the
dispersion of the associated values of dt in each cluster is mini-
mized, i.e., in such a way that the following total measure is
minimized:
f ðxÞ ¼ 1
T

XN

i¼1

X

t2ci

jdt � dij ð1Þ
where x is a vector representing a given synoptic pattern assign-
ment of length T (we consider a series of T pressure patterns to
be assigned, in N clusters or centroids), ci stands for the set of days
belonging to a given class i, and di stands for the mean value of the
wind speed within class i. Note that objective function f is a mea-
sure of MAE, and tries to explain both wind speed and wind direc-
tion. Note also that using f we can reconstruct the average wind
rose in the past from the pressure maps.

Thus, we have defined the problem as a clustering problem in
the space of matrices Pt, with a function of evaluation in the space
of wind speed vectors dt. These separate working spaces makes the
processing of clustering computation and evaluation difficult. Also,
note that the high dimension of the pressure space Pt is an extra
difficulty. We have tackled the problem by means of an evolution-
ary-based systems, which will be described and fully analyzed in
the next sections.
ed wind speed measurements (in Lambert projection).



Table 1
Main EA parameters used in the experiments of this paper.

EA parameter Value

Population length (L) 50
Number of initial centroids (N) 26
Total encoding length 112 (8 integers, 104 reals)
Selection tournaments (p) 80 (80% of 2L)
Mutation probability (Pm) 0.01 per individual
Stopping criteria Number of generations (500)
Number of runs 30
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3. An evolutionary algorithm for selecting pressure patterns for
wind speed reconstruction

In this section we summarize the Evolutionary Algorithm (EA)
we propose to obtain a good synoptic pressure clustering for wind
speed vector reconstruction. EAs has been applied to many differ-
ent optimization problems, in a huge range of applications, includ-
ing energy-related problems [18–22]. Given an optimization
problem, an EAs typically start from an initial set, called population,
of random (candidate) solutions (individuals). These solutions are
evolved by the repeated application of a set of evolutionary opera-
tors mainly selection, crossover and mutation.

Individuals are typically selected according to the quality of the
solution they represent. To measure the quality of a solution, a fit-
ness function is assigned to each individual of the population.
Hence, the better the fitness of an individual, the more possibilities
the individual has of being selected for reproduction and the more
parts of its genetic material will be passed onto the next genera-
tions. This is the principle of any selection mechanism incorpo-
rated to an EA. The selected individuals are reproduced by means
of crossover and mutation operators. In simple terms crossover ex-
changes some genetic material between two or more individuals,
while mutation changes a small part of the genetic material of an
individual to a new random value. By applying these operators in
a loop fashion, as EA explores the space of possible solutions of
an optimization problem. EAs have been shown to be efficient in
searching in huge spaces.

In the following sections we describe how we can adapt an EA
to look for pressure patterns in an efficient way. We also describe
the specific operators implemented in this work to improve the
search of the algorithm in this particular problem, following the
pseudo-code shown in Fig. 2. Table 1 shows the specific parameters
used to run the EA in Section 4.

3.1. Problem encoding

The first important task to face this problem is to find a simplest
way to encode matrices Pt. An intuitive and easy form is to reduce
the number of points in the grid: instead of using the information
of all the points int the grid, we can condense somehow the infor-
mation by using differences of pressure between points in the grid.
Fig. 2. Pseudo-code of the proposed evolutionary algorithm.
Of course, different number of differences can be used. In this case,
we have encoded the information of the grid by using a set of four
pressure differences Dp (eight points in the grid). This way we re-
duce the space of matrices Pt to an space of four dimensions (space
of differences of pressure). Note that we do not fix the points of the
grid involved in the calculations of the differences, but the algo-
rithm must locate the optimal points which provide the best pos-
sible encoding of the synoptic situation Pt. Thus, the first part of the
encoding in the proposed evolutionary algorithm is a set of eight
integer numbers Pi 2 ½1; . . . ;182�; i ¼ 1; . . . ;8; (number of points
in the grid considered), representing four pressure differences, in
the following way:

Dpk ¼ PtðP2k�1Þ � PtðP2kÞ; k ¼ 1; . . . ;4 ð2Þ

Then, once we have obtained an efficient representation and encod-
ing of matrices Pt (using the four differences Dpk), we need to en-
code the different N clusters in the new space of differences of
pressure. This can be easy done by encoding each centroid of the
cluster in the space, as a four-dimensional vector of real values
(one dimension representing each difference of pressure). Thus,
each centroid will be represented by a string of 4 real numbers,
and the complete set of centroids can be therefore encoded in a vec-
tor of 4N real numbers.

The final encoding of the problem in the proposed evolutionary
algorithm will be therefore the following:

½P1; . . . ;P8jc11; c12; c13; c14; . . . ; cN1; cN2; cN3; cN4� ð3Þ

where we have separated the integer part of the encoding from the
real part. Note that we apply different operators to the integer and
real part of the individuals in the algorithm, as we will describe in
the next sections.

3.2. Crossover operator

The crossover operator is known to improve the evolutionary
search in many applications [23]. For this problem, we have imple-
mented a mixed crossover approach, different for the integer part
of the individual and for the real part. In the case of the integer part
(first of the individual in Eq. (3)), we implement a multi-point
crossover. After forming couples with the individual in the popula-
tion, we implement the multi-point crossover by means of a ran-
domly generated binary template of length 8 (length of the
integer part of the individual). A 1 in the template means that
the corresponding genes of the couple will swap, whereas a 0
means that the genes will not swap. A different template will be
generated for all the couples in a generation. Fig. 3 shows a small
example of this crossover procedure for the integer part of the
individuals.

The crossover operator for the real part of the individual is car-
ried out also implementing a multi-point crossover approach, but
in two different modes: first a normal mode, in a similar way as
the previous operator defined above, but in the real part of the
individual (see Fig. 4). Note that, in this case, the template has
length 4N. Also, we consider a second crossover mode, in which



Fig. 3. Crossover applied to the integer part of the individuals.

Fig. 4. Crossover applied to the real part of the individuals (parts of centroids
interchanged).
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we interchange only parts of the individual belonging to a certain
centroid (no part of centroids are allowed to be swapped). The
length of the template in this second running mode of the cross-
over is N. Fig. 5 shows an example of this second crossover mode
for the real part of the individuals. Basically, the first crossover
mode generates new centroids by combining existing ones, and
the second mode interchanges two centroids from different indi-
viduals. Both crossover modes are interesting and have an impor-
tant role in the evolution of the population. Note that we apply
the crossover operator a number of times necessary to obtain an
offspring population of the same size as the initial (parents) one
(L).
Fig. 5. Crossover applied to the real part of the individuals (complete centroids
interchanged).
One important aspect to be taken into account is that, after
applying the crossover operators, there may be situations in which
a given centroid has no pressure matrix assigned. When one of
these cases occur, the void centroid is erased and its components
reassigned to the proximity of a valid centroid (one with pressure
matrices assigned). This procedure is carried out by assigning the
coordinates of the centroid (differences of pressure) and slightly
modifying them by adding a Gaussian noise to each coordinates.
The pressure matrices are then reassigned to their nearest cen-
troid. With this easy procedure we avoid the presence of void cen-
troids in the evolutionary algorithm, which distorts somehow the
efficiency of the search.
3.3. Mutation operator

Mutation operator is applied with a very low probability
(Pm = 0.01) to each individual in the offspring population. Once a
given individual is going to be mutated, the procedure of mutation
is divided into two different versions, depending on whether it is
applied on the integer part or to the real part of the individual.
The mutation of the integer part is carried out by means of a inte-
ger randomized substitution of the current values of the individual,
by different integers, in the interval [1, 182].

We have tested different operators for the mutation in the real
part of the individual. First, we have tested to add uniform noise in
the interval [�5, 5], to a number of randomly chosen values of the
real part in the mutated individual. We have also tested to change
the values in this real part of each individual by means of Gauss-
ian-based mutation and Cauchy-based mutation, which have been
proven to improve the search in several problems [24–26]. We will
compare the performance of the evolutionary algorithm including
all these mutation operators in Section 4.
3.4. Selection operator

In this paper we use a tournament selection, which will be ap-
plied to the joint population formed from merging the initial and
offspring populations. The result of the selection operator will be
a single population, of size L, which will be the parents of the next
generation of individuals. Basically, once the complete joint popu-
lation of parents and offspring is formed, the standard tournament
selection, as described in Ref. [24], has two main steps:

� Conduct pairwise comparison over the union of parents and off-
spring: for each individual, p opponents are chosen uniformly at
random from all the parents and offspring. For each comparison,
if the individual’s fitness is better than the opponent’s, it
receives a ‘‘win’’.
� Select the L individuals out of the union of parents and offspring

that have the most ‘‘wins’’ to be parents of the next generation.

Using this easy procedure, the remaining L individuals act as the
parents of the next generations, and the crossover and mutation
operators are applied again in a loop fashion, until the maximum
number of generations are reached.
4. Experimental part

This section presents the experimental part of this study. First
we describe the available data used to test the proposed EA, and
then we show the specific reconstruction results in each measuring
tower considered.
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Fig. 6. Locations of the six different meteorological towers considered in this paper.

Table 2
Performance of the proposed evolutionary algorithm with different mutation
operators in all the measuring towers considered (from T1 to T6).

Mutation Av. fitness (Eq. (1)) Std dev.

T1
Uniform [�5, 5] 3.5950 0.1166
Gaussian (0, 1) 3.1479 0.1610
Cauchy (t = 1) 3.1554 0.1389

T2
Uniform [�5, 5] 3.1602 0.1158
Gaussian (0, 1) 3.1726 0.1267
Cauchy (t = 1) 3.1827 0.1079

T3
Uniform [�5, 5] 3.7857 0.0754
Gaussian (0, 1) 3.7921 0.0921
Cauchy (t = 1) 3.7877 0.0686

T4
Uniform [�5, 5] 3.6986 0.1320
Gaussian (0, 1) 3.6703 0.1211
Cauchy (t = 1) 3.6882 0.1157

T5
Uniform [�5, 5] 3.1069 0.1444
Gaussian (0, 1) 3.1479 0.1610
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4.1. Data available

Wind speed real data from 10 years (1999–2008) of six meteo-
rological towers in different points of Spain (Fig. 6 shows the loca-
tion of the towers in Spain) are available for this study. The data
consist of wind speed and direction data, taken at the measure-
ment towers, at 40 m of height every 10 min. Averages over 24 h
are considered to obtain daily data vectors dt in each measurement
tower. On the other hand, average daily pressure maps for the
same period have been obtained from the National Center for Envi-
ronmental Prediction/National Center for Atmospheric Research
Reanalysis Project (NCEP/NCAR) [27], which are public data pro-
fusely used in climatology and meteorology applications. As previ-
ously mentioned, we have considered an uniform grid in latitude
and longitude, shown in Fig. 1, with 182 measurement points. Re-
call that the proposed evolutionary algorithm uses this value as a
parameter of the encoding (in the differences of pressure, integer
part of the encoding). We have set the two final years (2007 and
2008) of the data for training and the rest of years (1999–2006)
as a test set in each tower, where we measure the quality of the
proposed EA in reconstructing the wind speed series.
Cauchy (t = 1) 3.1554 0.1389

T6
Uniform [�5, 5] 2.8835 0.1348
Gaussian (0, 1) 2.8939 0.1145
Cauchy (t = 1) 2.8959 0.1349

Table 3
Performance of the IFEP algorithm in the problem tackled (average of 30 runs in all
measuring towers).

Tower Av. fitness (Eq. (1)) Std dev.

T1 3.6499 0.0872
T2 3.2272 0.0908
T3 3.8259 0.0520
T4 3.7262 0.0851
T5 3.3052 0.1439
T6 2.9513 0.1031
4.2. Results

Table 2 shows the average fitness (over 30 runs) and standard
deviation obtained with the proposed EA, when applying different
mutation operators (uniform, Gaussian and Cauchy mutations), for
the six measuring towers considered in this paper. Since the fitness
value (given by Eq. (1)) is a measure of MAE, the lowest values
indicate a better performance. In general the EA proposed works
well, with small variations depending on the mutation operator
used for the real part of the encoding. We have carried out a com-
parison with the IFEP algorithm described in Ref. [24], as a refer-
ence approach. The IFEP approach in Ref. [24] is an evolutionary
optimization approach, which uses Gaussian and Cauchy muta-
tions to guide the search. The IFEP can be adapted to work on
the proposed encoding for the current problem (some simple mod-
ifications must be included to manage the integer part of the
encoding). Table 3 shows the results obtained when the IFEP algo-
rithm is applied on the different measuring towers considered. The
results show that the IFEP is also able to solve the problem in an
accurate way, though the proposed EA obtains in general better re-
sults in all the towers considered. This may indicate that in this
particular problem the inclusion of crossover improves the perfor-
mance of the evolutionary algorithm.

Following, we graphically present the results of the reconstruc-
tion of average wind speed in each tower in the test years consid-



(a) (b)
Fig. 7. Tower 1: (a) Real wind rose. (b) EA reconstructed wind rose.

(b)(a)
Fig. 8. Tower 2: (a) Real wind rose. (b) EA reconstructed wind rose.

(b)(a)
Fig. 9. Tower 3: (a) Real wind rose. (b) EA reconstructed wind rose.
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(b)(a)
Fig. 10. Tower 4: (a) Real wind rose. (b) EA reconstructed wind rose.

(b)
Fig. 11. Tower 5: (a) Real wind rose. (b) EA reconstructed wind rose.

(b)(a)
Fig. 12. Tower 6: (a) Real wind rose. (b) EA reconstructed wind rose.
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ered (1999–2006), by comparing the reconstructed wind rose (best
individual found in the EA evolution) with the real one in each
tower. Note that we have not found alternative algorithms in the
literature which use synoptic pressure measure to reconstruct
the wind speed, so the comparison must be carried from the real
measures obtained. Figs. 7–12 show the comparison of the real
and reconstructed wind speed using the proposed EA, for Towers
1–6, respectively. Fig. 7 shows this comparison for Tower 1, sited
at the north part of Guadalajara, Spain. The wind speed reconstruc-
tion for the 8 years considered is quite consistent to the real mea-
sure. Small increasing in wind module and direction frequency
with respect to the real wind rose is obtained in the EA reconstruc-
tion for south, south-west, north-west and north directions,
whereas north-east directions have been slightly underestimated
by the EA approach. Fig. 8 shows the EA reconstruction and real
average wind speed for Tower 2, sited also in Guadalajara, close
to Tower 1 (about 20 km). In this case the reconstruction is even
better than for Tower 1, and the EA is able to accurate locate the
main wind directions, with a slightly decreasing of the wind mod-
ule and frequency for the south-west direction. Fig. 9 shows the
real and reconstructed wind rose for Tower 3, sited in La Rioja,
Spain. In this case the reconstruction is not so good, and, in spite
of the EA localizes the main wind directions, the reconstruction
overestimates the north-east wind components, whereas it under-
estimates the south-west directions. EA reconstruction for Tower 4
(sited at Salamanca, Spain) is again quite good (see Fig. 10). The EA
slightly overestimates the north-east directions, but the southern
components are accurately modeled. Wind reconstruction for
Tower 5 (Albacete, Spain), shown in Fig. 11 is really accurate. Only
slightly underestimation of west components can be observed, but
the reconstruction of the average wind speed from pressure data in
this tower can be considered as good. Finally, Fig. 12 shows the
average wind speed reconstruction of the test period considered
for Tower 6, sited in Cádiz, Southern Spain. In this case, the figure
shows that the EA slightly overestimates south-east components of
the wind, whereas it underestimates south and south-west compo-
nents. Anyway, the wind speed reconstruction in this tower is
really reasonable, since the main wind direction is perfectly ob-
tained by the proposed EA.

Summarizing, the proposed method based on evolutionary clus-
tering in pressure has been shown to be a valid method to recon-
struct the wind speed vector (module and direction), in an
accurately way. Thus, this method can be used to wind reconstruc-
tion in wind farms or obtention of wind missing values from pres-
sure patterns when there is no other variables or measures
available.

5. Conclusions

In this paper we have proposed a novel method for wind speed
reconstruction based on evolutionary computing. Specifically, we
have proposed an evolutionary algorithm which looks for the best
clustering of synoptic pressure situations, in terms of an objective
function which involves a wind speed measure in a given point of
study. We have shown the good performance of the proposed tech-
nique in the reconstruction of the average wind speed in six wind
towers in Spain, where the proposed algorithm has been able to
reconstruct daily average wind speed with some accuracy. The pro-
posed approach is a good option to wind speed reconstruction ser-
ies when there is no local data available. In these cases, the
proposed approach and a synoptic pressure database will be en-
ough to obtain a first wind speed reconstruction.
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